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Self-organized states in cellular automata: Exact solution
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The spatial structure, fluctuations as well as all state probabilities of self-organized~steady! states of cellular
automata can be found~almost! exactly andexplicitly from their Markovian dynamics. The method is shown
on an example of a natural sand pile model with a gradient threshold.@S1063-651X~98!06211-4#

PACS number~s!: 05.40.1j, 03.20.1i, 46.10.1z, 64.60.Lx
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Complicated dynamics of various discrete systems m
naturally be modeled by cellular automata~CA! having
rather simple iteration rules. In particular, CA models a
useful to study traffic jams@1#, granular material dynamic
@2#, and self-organization@3,4#. The transport properties o
systems, especially in the self-organized~SO! critical re-
gime, were extensively studied~cf. @4–8#!. However, for
many applications, one needs to know an entire structur
the SO states. These may include~i! the temperature profile
for the convection dominated thermoconduction and tur
lent convection@9# ~as in the convective zone of the sun a
stars!, ~ii ! stability and average profiles of granular materi
~e.g., the sand pile profiles! and granular flows@2,3#, ~iii !
equilibrium and steady state profiles of plasma pressure
temperature in fusion devices@8,10#, etc. Despite its impor-
tance, the problem of spatial structure and characteristic
the SO steady states has received minor attention@7,11–13#.
In this paper, we propose a method that is equally applica
to any CA provided its rules are rather simple. We illustra
it on the simplest and most popular example of a o
dimensional sand pile with a gradient stability criterion. No
that this model is the closest to a natural pile of sand crea
by random sprinkling of sand and with a known repo
angle. We focus on calculating an average slope~the calcu-
lation is more transparent! though calculating other charac
teristics is trivial.

An interesting result obtained is that the SO profiles o
local slope arenontrivial even for this simplest case. The
are typically flat ~e.g., linear! throughout the pile while a
narrow region~similar to the boundary layer! with rapidly
increasing gradient always occurs near the top of the p
This picture is very similar to that experimentally measur
in a strongly turbulent convection of a passive scalar~tem-
perature! with a mean gradient@9#. The region of the super
critical ~unstable! gradient may form near the bottom of th
pile when the noise is strong enough to maintain almost c
tinuous sand flow~overlapped avalanches!. This is in excel-
lent agreement with direct numerical simulations@10#.

Among many sand pile models, the Abelian model is
only one that was proved to beanalytically exactly solvable
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@12,14#. This model is, however, rather unnatural since
stability criterion is given in terms of a siteheight, not slope
of the pile ~which depends on neighboring sites too!. An-
other tacit assumption is one ofweak noise: no sand is added
to the pile unless at least one unstable site presents~i.e., until
the very last avalanche is gone!. Note that ‘‘waves of top-
pling’’ @13#, which are the main point of the whole analys
are well defined in theweak noiselimit, only. We show that
both these restrictions may be relaxed:~i! a site stability
criterion may depend on a site’s neighbors and~ii ! sand may
be added at every time step thus affecting an avalanche
namics. We also show that in the weak noise limit, all st
probabilities can be calculated exactly in aclosed form,
while for the strong noise, they can be foundalmostexactly,
i.e., with anya priori given accuracy.

For a generalN-dimensional sand pile automaton, the pr
cedure is as follows.~1! Reformulate the model in the rep
resentation where the stability islocal and defined by the
state of a site alone. This can be done at the expens
introducing a nonlocality to the toppling and noise rules~i.e.,
they may depend on states of adjacent sites too!. ~2! Con-
sider the dynamics of a single site. Since toppling rules h
no intrinsic memory, however, it is Markovian. Construct
N-dimensional Markov hyperlattice~an analog of a Markov
chain in one dimension! with the transition probabilities de
fined by the CA rules. All the transition probabilities th
depend on states of other sites are, for now, free parame
Introducing a generating function, one can then solve
problem for a single site.~3! Noting that all sites are identi
cal, we relate the Markov transition probabilities for differe
sites. Boundary conditions then uniquely define their valu
and, thus, the SO state of the pile. Note that a mean-fi
type closure is needed at step~3! only.

Model. The model we consider consists ofL11 spatial
sites, numbered fromx50 to x5L. To each sitex is as-
signed a variableh(x), the height of the site. CA rules ar
applied to the pile at each timestep. Sand grains are ad
randomly to sites with probabilitiespsand(x) increasing the
height by one. When the sitex is unstable, i.e., if the loca
slope @difference of heights of two neighboring sitesh(x)
2h(x11)# exceeds some critical valueDhcrit(x), Nf sand
grains topple onto the neighboring sitex11 ~local, limited
model@4#!. Note thatNf.1 corresponds to the physical situ
ation where friction between sand grains at rest is gre
than friction of those in motion. Sand is expelled from t
pile through the right endx5L.

/
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For the stability condition to be local, we represent t
sand pile in ‘‘gradient space.’’ We assign to any site t
local differenceof heights of the nearest neighborsDh(x)
5h(x)2h(x11). Then the noise rule reads:

Dh~x21!→Dh~x21!21,

Dh~x!→Dh~x!11; ~noise! ~1a!

and the toppling rule reads:

Dh~x21!→Dh~x21!1Nf ,

Dh~x!→Dh~x!22Nf ,

Dh~x11!→Dh~x11!1Nf . ~1b!

The left end (x50) is now an open boundary~top of the
pile!: Dh(0)→Dh(0)22Nf , Dh(1)→Dh(1)1Nf ; the
right end (x5L) is a closed boundary~bottom of the pile!:
Dh(L21)→Dh(L21)1Nf , Dh(L)→Dh(L)2Nf . Note
that ‘‘particles’’ in the gradient space arenot sand grains.
They may enter or leave the system through the left bou
ary, only. Noise creates a ‘‘particle’’ atx50 with the prob-
ability psand(0), asfollows from Eq. ~1a! for x50. A top-
pling at x50 results in a sudden loss ofNf ‘‘particles.’’

Zero-dimensional pile. Now, we may consider one site,x,
alone. It is described by a collection ofstatesrepresenting all
possible values oflocal gradient. Negative states are no
allowed. These states are labeled by an integer variabk
[Dh(x), and the critical slope isZc[Dhcrit(x). The states
k,Zc are stable,k.Zc are unstable, and the statek5Zc is
marginally stable. We introduce the probabilitiespk for a site
to occupy a statek, i.e., to have the slopeDh5k. Due to
noise and overturning events, the state of a site will evolv
time. The rules given by Eqs.~1! are independent of previou
history of a system. Therefore, they define the evolution
the slope of a site to bea Markov process. The states are
arranged in increasing order ofk form a Markov chain. Add-
ing and toppling rules specify transition probabilities fro
one state to another on this chain.

~1! Adding sand@Eq. ~1a!# results in jumps by 1 right
or left ~i.e., a increase or decrease gradient!. The trans-
ition probabilities of the process area andb, respectively,
and equal: a5psand(x11)@12psand(x)#, b5psand(x)@1
2psand(x11)#. Note here thatadding a sand grain in rea
space results in anincreaseor decreaseof a state~i.e., local
slope! in gradient space.

~2! Toppling of a site@Eq. ~1b!# results in a jump by 2Nf
states left~i.e., a decrease in gradient!. The probability of
that process is1., i.e., an unstable state topples on the n
time step with the probability unity.

We introduce two ‘‘nonlocal’’ transition probabilities.~i!
Toppling of oneof two neighboring sites results in a jump b
Nf states right~i.e., an increase in gradient!. The probability
of this process is written ase* . ~ii ! Toppling of both two
neighbors results in a jump by 2Nf states right. The transi
tion probability is written asd* . Both e* andd* are simply
constants here, which are to be specified in the o
dimensional model via a mean-field-type closure. Gener
speaking,a, b, e* , and d* will depend onx and k. We
d-
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later consider the case where all are independent ofx andk
~homogeneous pile with no local slope dependence!.

In Fig. 1, the Markov chain with all possible transition
for stable ~solid circles! and unstable~open circles! states
with corresponding transition probabilities is shown. Noi
results in a one-step random walk of a particle on this cha
Toppling of sites results in jumps byNf and 2Nf states.
Since the noise process is statistically independent of
pling, these processes may combine with each other resu
in jumps byNf21, Nf11, 2Nf21, and 2Nf11, with the
probabilities respectively proportional toe* b, e* a, d* b,
and d* a. All other transition coefficients are similarly de
fined.

We thus have reduced the problem of a sand pile to
problem ofa random walkof a particle on a chain of state
where the transition probabilities are exactly defined. Fo
general type of a Markov process thegeneral kinetic (or
master) equationis

ṗn~ t !5 (
k50

`

$gnkpk~ t !2gknpn~ t !%, ~2!

where gkn are the transition probability coefficients from
staten to statek. Note that the termgnkpk describes transi-
tions into the staten from statek, while gknpn corresponds
to transitionout of ninto other statesk. This equation defines
the probabilitiespn for the system to be in staten. The
general kinetic equation for one site can easily be writ
using Fig. 1. Because of space limitations, we do not writ
explicitly. We introducea generating functionfor the prob-
ability distributionpk :

F~z,t !5 (
k50

`

zkpk~ t !, ~3!

wherez can take valuesuzu<1 for a series to converge. Th
probability distribution can be recovered from the generat
function as

pk~ t !5~1/k! !dkF~z,t !/dzkuz50 . ~4!

Some properties of the generating function areF(1,t)
51, Fz8uz515^n(t)&, . . . , where the prime means deriva

FIG. 1. The Markov chain representing a collection of sta
~slopes! for any sitex in the sand pile model.
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tive. Here the first is the normalization condition:(pj51,
and second relatesF(z,t) to the first moment~e.g., expecta-
tion value! of the probability distribution. Higher moment
~i.e., standard deviation, etc.! are obtained from higher de
rivatives of F(z,t). Multiplying each of Eqs.~2! for ṗk re-
spectively by zk and taking sum over all 0<k,`, we
straightforwardly obtain an equation for a generating fu
tion F5F1C. Since we are interested only in a stea
state, we setḞ50. Then it reads

F~z!$d%1C~z!~z22Nf21!@a211$d%#5p0~z2121!,
~5!

where a5b,e5e* /a,d5d* /a and $d%5(z1z2122)(1
1eazNf1daz2Nf)1e(zNf21)1d(z2Nf21). Here F(z)
5(k50

Zc zkpk , C(z)5(k5Zc11
` zkpk are the partial generatin

functions of stable and unstable states, respectively.
To find F, one may use a simple trick@using Eq.~5!#:

S ]Zc111 j

]zZc111 j
F~z!D U

z50

[0, j >1. ~6a!

In general, this system is an infinite set of related equatio
It relates allpZc111 j to p0 . Together withF(1)51, it pro-

vides anexact solution, F(z), of Eq. ~5!. For an Abelian
sand pile, the transition probabilities of simultaneous to
pling and noise@e.g., toppling tohigher states,1.d* a ~see
Fig. 1!# vanish identically by definition.~Note this is the
limit when noise is tooweakto affect avalanche dynamics!
Thus, the highest achievable state isZc12Nf . The Markov
chain is finite, and Eqs.~6a! reduce~schematically! to the
system with triangular matrix~with ai j and bk being con-
stants!

S a1,1 a1,2 . . . a1,2Nf

0 a2,2 . . . a2,2Nf

A A � A

0 0 . . . a2Nf ,2Nf

D S pZc11

pZc12

A

pZc12Nf

D 5S b1

b2

A

b2Nf

D p0 ,

~6b!

which can be solvedexactlyand explicitly. In the opposite
case, when noise isnotweak, one may, however, truncate th
system of Eqs.~6a! to a finite hierarchy simply by noticing
that the probabilitiespZc12Nf1 j , j >1, are very low since
they can be reached only fromunstablestates. If one trun-
cates at the stateZc12Nf1 j , the error in determination o
all the state probabilities,pk , will not exceed the value
(1.d* a) j .

Equations~6a! or ~6b! constitute the~almost! exact solu-
tion, i.e., state probabilities of a sitex, of a CA sand pile
model in terms of state probabilities~entering throughe and
d) of its neighbors.

The normalization condition,F(1)51, gives the relation
for the total probability for a site to be unstable:

P[C~1!5a@p01Nf~e12d!#/2Nf . ~7!

We straightforwardly define the SO profile as the mathem
cal expectation value~average! of the random process:
-

s.

-

i-

DhSO[^n&5Fz8~1!, ~8!

where two unknownsp0(e,d) andCz8(1) appear and are to
be found from Eqs.~6a! or ~6b!. For arbitraryZc and Nf
~especially for largeZc andNf , i.e., in the continuous limit!
the result can be easily found numerically. To obtain an a
lytically tractable expression, we make additional~though
natural! approximations.

~1! Let us consider an asymmetric random walk on a fin
chain with transition probabilities to the right and to the le
g andr , respectively. One can easily show@recursively from
Eq. ~2!# that p0(g/r )5(g/r 21)@(g/r )c21#21, wherec is a
constant that is found from an expansion ofp0(g/r ) near
g/r;1 to givep0ug/r 5151/c. By analogy with an asymmet
ric random walk, we writeg/r 5(a1Nfe* 12Nfd* )/b51
1Nfe12Nfd and

p0.Nf~e12d!/$@11Nf~e12d!#1/p0
~0!

21%, ~9!

where p0
(0)5p0ue5d505(Zc2Nf13/2)21 @the last follows

from Eq. ~5! for e5d50#.
~2! To defineCz8(1), we consider two limits for which

C(z) is knowna priori. Whene5d50, only one-step tran-
sitions~noise! exist. Therefore, from the definition, we hav
Cz8(1)ue5d505(Zc11)pZc11 , i.e., only the first unstable

state can be achieved. Fore,d is sufficiently large, the state
kP@Zc11, Zc12Nf # are roughly uniformly populated
while higher statesZc12Nf1k,k>1 have low probability,
as they can be reached only fromunstablestates. Thus, we
can writeCz8(1).C(1)@Zc111(2Nf21)/2#. From com-
parison of the last two equations, we conclude

Cz8~1!.P@~Zc11!1~Nf21/2! f ~e,d!#, ~10!

wheref 51 for largee,d and vanishes fore5d50. Because
the quantitye12d is a ‘‘measure of asymmetry’’ of a ran
dom walk, we choosef (e,d)52(e12d)/@11(e12d)#.

Finally, the SO local slope~for a!1) reads

DhSO.@p01Nf~e12d!#S Nf21/2

11Nf~e12d!
1a D

1~Zc1123Nf /2!1dNf /~e12d!. ~11!

Here p0 is given by Eq.~9!. Equation~11! depends on the
noise strengtha as well as on the toppling probabilities o
adjacent sites of the pile.

One-dimensional pile. Equation~11! defines the average
SO slope for every sitex. The quantitiese andd are defined
by toppling probabilities of neighboring sites. Each sitex
topples with probabilityP5P(x). This probability varies
from site to site. In the mean-field approximation, by defi
tion

ea5P~x21!@12P~x11!#

1P~x11!@12P~x21!#, ~12!

da5P~x21!P~x11!.
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Note, the stronger the noise, the better this anzatz wo
because decorrelation ofP(x61) is caused by noise. Equa
tion ~7! can be written as a recurrence equation for probab
tiesP(x)

2P~x!5ap0~x!/Nf1@P~x21!1P~x11!#, ~13!

wherep0(x) is also a functionP and given by Eq.~9!. This
equation can be solved numerically with the condition at
open ~left! boundary that ‘‘influx’’5‘‘outflux.’’ The initial
value is thusP(0)5psand(0)/Nf . Equation ~11! together
with Eqs.~12! defines a spatial profile of the SO slope of t
sand pile. In the continuous limit~vanishing cell size of a
Markov chain!, Eq.~13! is equivalent toPxx9 5ap0 /Nf . Thus
the approximate solution matching the boundary conditio

P~x!.~psandp0 /Nf !x
21@psand~12p0!/Nf #x. ~14!

The SO gradient profiles are shown in Fig. 2 forZc
58, Nf53, and three values of noise strengtha.psand: a
51/5000 ~low noise!, a51/1500, and a51/500 ~high
noise!. The average gradient profiles always have a region
relatively small gradient,‘‘boundary layer,’’ near the top of
the pile. This region appears due to the effect of the open~in
gradient space! boundary atx50. In the case of low noise
the SO gradient is almost constant throughout the pile
always below the marginally stable value. In the ‘‘ove
driven’’ regime~i.e., high noise!, a region of asupercritical
gradient appears near the bottom of the pile. In this case
sand influx is so large that a nearly constant flow of sa
-
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forms near the bottom, thus maintaining an unstable, su
critical gradient. These results agree well with simulatio
@10#.

In this paper, we show that the Abelian property is n
necessary for an~almost! exact solvability of a sand pile CA
As an example, a spatial profile of a one-dimensional s
pile is calculated.
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FIG. 2. The SO profiles of gradient of the pile (Zc58, Nf

53) for three noise levels.
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