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Self-organized states in cellular automata: Exact solution
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The spatial structure, fluctuations as well as all state probabilities of self-orgasieedy states of cellular
automata can be foun@lmos} exactly andexplicitly from their Markovian dynamics. The method is shown
on an example of a natural sand pile model with a gradient thresf@1®63-651X98)06211-4

PACS numbg(s): 05.40:+j, 03.20+i, 46.10:+2, 64.60.Lx

Complicated dynamics of various discrete systems may12,14). This model is, however, rather unnatural since its
naturally be modeled by cellular automat@A) having  stability criterion is given in terms of a siteeight notslope
rather simple iteration rules. In particular, CA models areof the pile (which depends on neighboring sites toén-
useful to study traffic jam§1], granular material dynamics other tacit assumption is one wkak noiseno sand is added
[2], and self-organizatiof3,4]. The transport properties of to the pile unless at least one unstable site pregeatsuntil
systems, especially in the self-organizé8iO) critical re- the very last avalanche is gonéNote that “waves of top-
gime, were extensively studietf. [4—8]). However, for  pling” [13], which are the main point of the whole analysis,
many applications, one needs to know an entire structure gire well defined in theveak noisdimit, only. We show that
the SO states. These may inclu@ethe temperature profiles both these restrictions may be relaxdd: a site stability
for the convection dominated thermoconduction and turbucriterion may depend on a site’s neighbors @indsand may
lent convectior{9] (as in the convective zone of the sun andbe added at every time step thus affecting an avalanche dy-
starg, (i) stability and average profiles of granular materialsnamics. We also show that in the weak noise limit, all state
(e.g., the sand pile profilesand granular flowg2,3], (iii)  probabilities can be calculated exactly inctosed form
equilibrium and steady state profiles of plasma pressure andghile for the strong noise, they can be fouaichostexactly,
temperature in fusion devic¢8,10], etc. Despite its impor- i.e., with anya priori given accuracy.
tance, the problem of spatial structure and characteristics of For a generaN-dimensional sand pile automaton, the pro-
the SO steady states has received minor attefiicii—13.  cedure is as follows(1) Reformulate the model in the rep-

In this paper, we propose a method that is equally applicableesentation where the stability lecal and defined by the

to any CA provided its rules are rather simple. We illustratestate of a site alone. This can be done at the expense of
it on the simplest and most popular example of a oneintroducing a nonlocality to the toppling and noise rules.,
dimensional sand pile with a gradient stability criterion. Notethey may depend on states of adjacent sites. t& Con-

that this model is the closest to a natural pile of sand createsider the dynamics of a single site. Since toppling rules have
by random sprinkling of sand and with a known reposeno intrinsic memory, however, it is Markovian. Construct an
angle. We focus on calculating an average sltihe calcu- N-dimensional Markov hyperlattican analog of a Markov
lation is more transparenthough calculating other charac- chain in one dimensigrwith the transition probabilities de-
teristics is trivial. fined by the CA rules. All the transition probabilities that

An interesting result obtained is that the SO profiles of adepend on states of other sites are, for now, free parameters.
local slope arenontrivial even for this simplest case. They Introducing a generating function, one can then solve the
are typically flat(e.g., lineay throughout the pile while a problem for a single sitg(3) Noting that all sites are identi-
narrow region(similar to the boundary laygmwith rapidly  cal, we relate the Markov transition probabilities for different
increasing gradient always occurs near the top of the pilesites. Boundary conditions then uniquely define their values
This picture is very similar to that experimentally measuredand, thus, the SO state of the pile. Note that a mean-field-
in a strongly turbulent convection of a passive scélam- type closure is needed at st&}) only.
peraturg with a mean gradieni9]. The region of the super- Model The model we consider consists bof-1 spatial
critical (unstabl¢ gradient may form near the bottom of the sites numbered fromx=0 to x=L. To each sitex is as-
pile when the noise is strong enough to maintain almost consigned a variabld(x), the height of the site. CA rules are
tinuous sand flowoverlapped avalanchesThis is in excel- applied to the pile at each timestep. Sand grains are added
lent agreement with direct numerical simulatidi$)]. randomly to sites with probabilitiepg,ndX) increasing the

Among many sand pile models, the Abelian model is theheight by one. When the siteis unstable, i.e., if the local
only one that was proved to tanalytically exactly solvable slope [difference of heights of two neighboring sitb$x)

—h(x+1)] exceeds some critical valugh.;(x), N; sand
grains topple onto the neighboring site-1 (local, limited
*Also at the Institute for Nuclear Fusion, RRC “Kurchatov Insti- model[4]). Note thatN;>1 corresponds to the physical situ-
tute,” Moscow 123182, Russia. URL: http://cfa-www.harvard.edu/ ation where friction between sand grains at rest is greater
~mmedvede/. Electronic address: mmedvedev@cfa.harvard.edu than friction of those in motion. Sand is expelled from the
TAlso at General Atomics, San Diego, CA 92121. pile through the right enat=L.
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For the stability condition to be local, we represent the
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sand pile in “gradient space.” We assign to any site the ,

local differenceof heights of the nearest neighbak$(x)
=h(x)—h(x+1). Then the noise rule reads:

Ah(x—1)—Ah(x—1)—1,

Ah(x)—Ah(x)+1; (noise (1a)
and the toppling rule reads:
Ah(x—1)—Ah(x—1)+Ns,
Ah(x)—Ah(x)—2N;,
Ah(x+1)—Ah(x+1)+N;. (1b)

The left end §=0) is now an open boundarifop of the
pile): Ah(0)—Ah(0)—2N;, Ah(1)—Ah(1)+N;; the
right end k=L) is a closed boundargbottom of the pilg:
Ah(L—1)—Ah(L—1)+Ns, Ah(L)—Ah(L)—N;. Note
that “particles” in the gradient space ar®t sand grains.
They may enter or leave the system through the left bou
ary, only. Noise creates a “particle” at=0 with the prob-
ability psand0), asfollows from Eq.(1a) for x=0. A top-
pling atx=0 results in a sudden loss b “particles.”
Zero-dimensional pileNow, we may consider one site,
alone. It is described by a collection statesrepresenting all
possible values ofocal gradient Negative states are not
allowed. These states are labeled by an integer variable
=Ah(x), and the critical slope iZ.=Ah.;(x). The states
k<Z. are stablek>Z. are unstable, and the stdte-Z.. is
marginally stable. We introduce the probabilitigsfor a site
to occupy a staté, i.e., to have the slopdh=k. Due to

noise and overturning events, the state of a site will evolve i

time. The rules given by Eq§l) are independent of previous

history of a system. Therefore, they define the evolution of

the slope of a site to ba Markov processThe states are
arranged in increasing order bform a Markov chain. Add-

ing and toppling rules specify transition probabilities from

one state to another on this chain.

(1) Adding sand[Eq. (1a)] results in jumps by 1 right
or left (i.e., a increase or decrease gradiefithe trans-
ition probabilities of the process are and B, respectively,
and equal: a=psapndX+1)[1=PsandX)], B=PsandX)[1
—PsandX+1)]. Note here thatddinga sand grain in real
space results in aimcreaseor decreaseof a state(i.e., local
slope in gradient space.

(2) Toppling of a sitd Eq. (1b)] results in a jump by R
states left(i.e., a decrease in gradigniThe probability of

that process i4., i.e., an unstable state topples on the next

time step with the probability unity.

We introduce two “nonlocal” transition probabilitiesi)
Toppling of oneof two neighboring sites results in a jump by
N; states righ{i.e., an increase in gradignThe probability
of this process is written as*. (ii) Toppling of both two
neighbors results in a jump byN\2 states right. The transi-
tion probability is written ass* . Both ¥ and §* are simply
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FIG. 1. The Markov chain representing a collection of states
(slopes for any sitex in the sand pile model.

later consider the case where all are independentasfd k
(homogeneous pile with no local slope dependgnce

In Fig. 1, the Markov chain with all possible transitions
for stable (solid circle3 and unstablgopen circley states

nd\gvith corresponding transition probabilities is shown. Noise

results in a one-step random walk of a particle on this chain.
Toppling of sites results in jumps bj; and 2N; states.
Since the noise process is statistically independent of top-
pling, these processes may combine with each other resulting
in jumps byN;—1, N¢+1, 2N;—1, and N+ 1, with the
probabilities respectively proportional & 8, €*a, & 3,
and 6* @. All other transition coefficients are similarly de-
fined.

We thus have reduced the problem of a sand pile to the
problem ofa random walkof a particle on a chain of states
where the transition probabilities are exactly defined. For a

rgeneral type of a Markov process tlgeneral kinetic (or

master) equatioris

bn(o:go {YnPk() = VinPn(D}, )

where y,, are the transition probability coefficients from
staten to statek. Note that the termy, py describes transi-
tionsinto the staten from statek, while y,,p,, corresponds

to transitionout of ninto other statek. This equation defines
the probabilitiesp,, for the system to be in state. The
general kinetic equation for one site can easily be written
using Fig. 1. Because of space limitations, we do not write it
explicitly. We introducea generating functioror the prob-
ability distributionp:

F(m:go pi(b), A3)

where{ can take valuef|<1 for a series to converge. The
probability distribution can be recovered from the generating
function as

Pi(t)= (1K) dF(£,1)/dZ ] =0 4

constants here, which are to be specified in the one-
dimensional model via a mean-field-type closure. Generallybome properties of the generating function &¢l.t)
speaking,a, B, €*, and 5* will depend onx andk. We =1, F/|,_;=(n(t)), ..., where the prime means deriva-
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tive. Here the first is the normalization conditiokip;=1,
and second relatds(¢,t) to the first momente.g., expecta-
tion value of the probability distribution. Higher moments
(i.e., standard deviation, elcare obtained from higher de-

rivatives OfF(K,t)- Multiplying each of Eqgs(2) for p, re-  (especially for larg&, andN, i.e., in the continuous limiit
spectively by and taking sum over all €k<w, we  the result can be easily found numerlcally To obtain an ana-
straightforwardly obtain an equation for a generating func4ytically tractable expression, we make additiorfiough
tion F=®+W. Since we are interested only in a steadynatura) approximations.

state, we seE=0. Then it reads (1) Let us consider an asymmetric random walk on a finite

Ahge=(n)=F;(1), (8)

where two unknowng( e, 8) and\Ifg(l) appear and are to
be found from Eqs(6a or (6b). For arbitraryZ. and N¢

F(§>{0}+W(§>(§*2Nf—1>[a*1+{0}]=po((l—l)@

where a=pB,e=€*/a,6=6*/a and {@}=({+¢1-2)(1
+eal™+ 8al®N) +e(M—1)+ 8((N—1). Here ®()
=Eigogkpk, V() =Efzzc+1§kpk are the partial generating
functions of stable and unstable states, respectively.

To find F, one may use a simple tridkising Eq.(5)]:

Pras sy
sy

§§Zc+l+j
It relates allpz .1 to po. Together withF(1)=1, it pro-
vides anexactsolution, F(¢), of Eq. (5). For anAbelian

(6a)

sand pile, the transition probabilities of simultaneous top-

pling and noisde.g., toppling tohigher states,1.6* a (see

Fig. 1)] vanish identically by definition(Note this is the
limit when noise is tooveakto affect avalanche dynamigs.
Thus, the highest achievable state&Zist 2N;. The Markov

chain is finite, and Eqs(6a) reduce(schematically to the

system with triangular matrixwith a;; and by being con-

stant$

a;1 a2 W\ Pz +1 by
0 &y, a2 N, Pz +2 b,
= : po’
0 O AN, 2N, [\ Pzoran, ban,
(6b)

which can be solve@xactlyand explicitly. In the opposite

case, when noise imtweak, one may, however, truncate the

system of Egs(6a to a finite hierarchy simply by noticing
that the probabilitiepz oy, +j, j=1, are very low since
they can be reached only froomstablestates. If one trun-
cates at the staté.+2N;+j, the error in determination of
all the state probabilitiesp,, will not exceed the value
(1.6* ).

Equations(6a) or (6b) constitute thgalmos} exact solu-
tion, i.e., state probabilities of a site of a CA sand pile
model in terms of state probabiliti€¢entering throughe and
8) of its neighbors.

The normalization conditiork(1)=1, gives the relation
for the total probability for a site to be unstable:

P=W(1)=a[po+N(e+28)]/2N; . 7

chain with transition probabilities to the right and to the left,
g andr, respectively. One can easily shomecursively from
Eq. (2)] thatpo(g/r)=(g/r—1)[(g/r)¢—1]"1, wherecis a
constant that is found from an expansion mf(g/r) near
g/r~1 to givepo|g,-1=1/c. By analogy with an asymmet-
ric random walk, we writeg/r =(a+N;e* +2N;6*)/8=1

+ Nf€+ 2Nf5 and

Po=Ni(e+28)/{[1+N;(e+28)]0 1,  (9)
where p{®=po| .- s-0=(Zc—N;+3/2)"* [the last follows
from Eq. (5) for e=5=0].

(2) To defineV, (1), we consider two limits for which

S\If(g) is knowna pr|0r| Whene= 6=0, only one-step tran-

sitions (noise exist. Therefore, from the definition, we have
v (1)|E s=0=(Z. +1)pZ +1, l.e., only the first unstable

state can be achieved. Faré is sufficiently large, the states
ke[Z.+1, Z;+2N;] are roughly uniformly populated
while higher stateic+ 2N;+k,k=1 have low probability,
as they can be reached only fraimstablestates. Thus, we
can write W ;(1)=W¥(1)[Z,+ 1+ (2N;—1)/2]. From com-
parison of the last two equations, we conclude

Y (1)=P[(Zc+1)+(N;—1/2)f(€,0)], (10
wheref=1 for largee, § and vanishes foe= §=0. Because
the quantitye+24 is a “measure of asymmetry” of a ran-
dom walk, we choosé(e,8)=2(e+28)/[1+(e+26)].

Finally, the SO local slopéfor a<1) reads

-1/2

Ahso:[po-k Ni(e+20)] m"—a

+(Z.+1—-3N¢/2)+ 6Ni/(e+20). (11
Here p, is given by Eq.(9). Equation(11) depends on the
noise strengthw as well as on the toppling probabilities of
adjacent sites of the pile.

One-dimensional pileEquation(11) defines the average
SO slope for every site. The quantities and § are defined
by toppling probabilities of neighboring sites. Each site
topples with probability?="P(x). This probability varies
from site to site. In the mean-field approximation, by defini-
tion

ea=P(x—1)[1-P(x+1)]

+P(x+1)[1-P(x—1)], (12

We straightforwardly define the SO profile as the mathemati-

cal expectation valuéaverage of the random process:

Sa=P(x—1)P(x+1).
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Note, the stronger the noise, the better this anzatz works, 85 F ' ' '
because decorrelation #f(x+ 1) is caused by noise. Equa- .
tion (7) can be written as a recurrence equation for probabili- = g0 L Mmarginal repose angle) Z=8 7 _ |
ties P(x) s ]
T s a=1/500 i
2P(x) = apo(X)INi+[P(x— 1)+ P(x+1)], (13 3 a=1/1500 ...~
R
wherepy(x) is also a functiorP and given by Eq(9). This 27001, e TS T T T T T 15000
equation can be solved numerically with the condition at the o]
open (left) boundary that “influx"="outflux.” The initial ? 65 1
value is thusP(0)=psand 0)/N;. Equation (11) together
with Egs.(12) defines a spatial profile of the SO slope of the 6.0 : . : : : . :
0 50 100 150 200

sand pile. In the continuous limitvanishing cell size of a

Markov chain, Eq(13) is equivalent tdP,,= apy/N¢ . Thus

the approximate solution matching the boundary conditionis FiG. 2. The SO profiles of gradient of the pil€/=8, N;
=3) for three noise levels.

spatial coordinate (x)

P(X)z(psanpO/Nf)Xz"'[psan({]-_pO)/Nf]X- (14

. . . _ forms near the bottom, thus maintaining an unstable, super-
The SO gradient profiles are shown iin Fig. 2 18 (jical gradient. These results agree well with simulations
=8, N¢=3, and three values of noise strengik-pg g @ [10].
=1/5000 (low noisg, «=1/1500, and a=1/500 (high In this paper, we show that the Abelian property is not
noise. The average gradient profiles always have a region of,ecessary for atalmos) exact solvability of a sand pile CA.
relatively small gradient;boundary layer,” near the top of ~ Ag an example, a spatial profile of a one-dimensional sand
the pile. This region appears due to the effect of the dpen pile is caIcuIate’d.
gradient spageboundary atx=0. In the case of low noise,
the SO gradient is almost constant throughout the pile and We are grateful to M.N. Rosenbluth for numerous inter-
always below the marginally stable value. In the “over- esting and fruitful discussions and critical comments. We
driven” regime (i.e., high noisg a region of asupercritical  also thank B.A. Carreras, D.E. Newman, and T.S. Hahm for
gradient appears near the bottom of the pile. In this case thdiscussions. This work was supported by the Department of
sand influx is so large that a nearly constant flow of sandEnergy under Grant No. DE-FG03-88-ER53275.
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